Opening Deep Neural Networks with Generative Models (2105.10013v3)
Abstract: Image classification methods are usually trained to perform predictions taking into account a predefined group of known classes. Real-world problems, however, may not allow for a full knowledge of the input and label spaces, making failures in recognition a hazard to deep visual learning. Open set recognition methods are characterized by the ability to correctly identify inputs of known and unknown classes. In this context, we propose GeMOS: simple and plug-and-play open set recognition modules that can be attached to pretrained Deep Neural Networks for visual recognition. The GeMOS framework pairs pre-trained Convolutional Neural Networks with generative models for open set recognition to extract open set scores for each sample, allowing for failure recognition in object recognition tasks. We conduct a thorough evaluation of the proposed method in comparison with state-of-the-art open set algorithms, finding that GeMOS either outperforms or is statistically indistinguishable from more complex and costly models.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.