Online Risk-Averse Submodular Maximization
Abstract: We present a polynomial-time online algorithm for maximizing the conditional value at risk (CVaR) of a monotone stochastic submodular function. Given $T$ i.i.d. samples from an underlying distribution arriving online, our algorithm produces a sequence of solutions that converges to a ($1-1/e$)-approximate solution with a convergence rate of $O(T{-1/4})$ for monotone continuous DR-submodular functions. Compared with previous offline algorithms, which require $\Omega(T)$ space, our online algorithm only requires $O(\sqrt{T})$ space. We extend our online algorithm to portfolio optimization for monotone submodular set functions under a matroid constraint. Experiments conducted on real-world datasets demonstrate that our algorithm can rapidly achieve CVaRs that are comparable to those obtained by existing offline algorithms.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.