Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Spatio-temporal Local Interpolation of Global Ocean Heat Transport using Argo Floats: A Debiased Latent Gaussian Process Approach (2105.09707v3)

Published 20 May 2021 in stat.AP and physics.ao-ph

Abstract: The world ocean plays a key role in redistributing heat in the climate system and hence in regulating Earth's climate. Yet statistical analysis of ocean heat transport suffers from partially incomplete large-scale data intertwined with complex spatio-temporal dynamics, as well as from potential model misspecification. We present a comprehensive spatio-temporal statistical framework tailored to interpolating the global ocean heat transport using in-situ Argo profiling float measurements. We formalize the statistical challenges using latent local Gaussian process regression accompanied by a two-stage fitting procedure. We introduce an approximate Expectation-Maximization algorithm to jointly estimate both the mean field and the covariance parameters, and refine the potentially under-specified mean field model with a debiasing procedure. This approach provides data-driven global ocean heat transport fields that vary in both space and time and can provide insights into crucial dynamical phenomena, such as El Ni{~n}o & La Ni{~n}a, as well as the global climatological mean heat transport field, which by itself is of scientific interest. The proposed framework and the Argo-based estimates are thoroughly validated with state-of-the-art multimission satellite products and shown to yield realistic subsurface ocean heat transport estimates.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.