Papers
Topics
Authors
Recent
Search
2000 character limit reached

Unreliable Sensors for Reliable Efficient Robots

Published 20 May 2021 in cs.CG and cs.DC | (2105.09667v1)

Abstract: The vast majority of existing Distributed Computing literature about mobile robotic swarms considers computability issues: characterizing the set of system hypotheses that enables problem solvability. By contrast, the focus of this work is to investigate complexity issues: obtaining quantitative results about a given problem that admits solutions. Our quantitative measurements rely on a newly developed simulation framework to benchmark pen and paper designs. First, we consider the maximum traveled distance when gathering robots at a given location, not known beforehand (both in the two robots and in the n robots settings) in the classical OBLOT model, for the FSYNC, SSYNC, and ASYNC schedulers. This particular metric appears relevant as it correlates closely to what would be real world fuel consumption. Then, we introduce the possibility of errors in the vision of robots, and assess the behavior of known rendezvous (aka two robots gathering) and leader election protocols when sensors are unreliable. We also introduce two new algorithms, one for fuel efficient convergence, and one for leader election, that operate reliably despite unreliable sensors.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.