Papers
Topics
Authors
Recent
2000 character limit reached

Copyright in Generative Deep Learning (2105.09266v5)

Published 19 May 2021 in cs.CY, cs.AI, and cs.LG

Abstract: Machine-generated artworks are now part of the contemporary art scene: they are attracting significant investments and they are presented in exhibitions together with those created by human artists. These artworks are mainly based on generative deep learning techniques, which have seen a formidable development and remarkable refinement in the very recent years. Given the inherent characteristics of these techniques, a series of novel legal problems arise. In this article, we consider a set of key questions in the area of generative deep learning for the arts, including the following: is it possible to use copyrighted works as training set for generative models? How do we legally store their copies in order to perform the training process? Who (if someone) will own the copyright on the generated data? We try to answer these questions considering the law in force in both the United States of America and the European Union, and potential future alternatives. We then extend our analysis to code generation, which is an emerging area of generative deep learning. Finally, we also formulate a set of practical guidelines for artists and developers working on deep learning generated art, as well as some policy suggestions for policymakers.

Citations (52)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.