Papers
Topics
Authors
Recent
2000 character limit reached

Forecasting with fractional Brownian motion: a financial perspective (2105.09140v3)

Published 19 May 2021 in q-fin.MF, q-fin.PM, q-fin.ST, and q-fin.TR

Abstract: The fractional Brownian motion (fBm) extends the standard Brownian motion by introducing some dependence between non-overlapping increments. Consequently, if one considers for example that log-prices follow an fBm, one can exploit the non-Markovian nature of the fBm to forecast future states of the process and make statistical arbitrages. We provide new insights into forecasting an fBm, by proposing theoretical formulas for accuracy metrics relevant to a systematic trader, from the hit ratio to the expected gain and risk of a simple strategy. In addition, we answer some key questions about optimizing trading strategies in the fBm framework: Which lagged increments of the fBm, observed in discrete time, are to be considered? If the predicted increment is close to zero, up to which threshold is it more profitable not to invest? We also propose empirical applications on high-frequency FX rates, as well as on realized volatility series, exploring the rough volatility concept in a forecasting perspective.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.