Papers
Topics
Authors
Recent
2000 character limit reached

ROmodel: Modeling robust optimization problems in Pyomo (2105.08598v1)

Published 18 May 2021 in math.OC

Abstract: This paper introduces ROmodel, an open source Python package extending the modeling capabilities of the algebraic modeling language Pyomo to robust optimization problems. ROmodel helps practitioners transition from deterministic to robust optimization through modeling objects which allow formulating robust models in close analogy to their mathematical formulation. ROmodel contains a library of commonly used uncertainty sets which can be generated using their matrix representations, but it also allows users to define custom uncertainty sets using Pyomo constraints. ROmodel supports adjustable variables via linear decision rules. The resulting models can be solved using ROmodels solvers which implement both the robust reformulation and cutting plane approach. ROmodel is a platform to implement and compare custom uncertainty sets and reformulations. We demonstrate ROmodel's capabilities by applying it to six case studies. We implement custom uncertainty sets based on (warped) Gaussian processes to show how ROmodel can integrate data-driven models with optimization.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.