Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Neural-network Quantum States for Spin-1 systems: spin-basis and parameterization effects on compactness of representations (2105.08579v2)

Published 18 May 2021 in quant-ph and cond-mat.str-el

Abstract: Neural network quantum states (NQS) have been widely applied to spin-1/2 systems where they have proven to be highly effective. The application to systems with larger on-site dimension, such as spin-1 or bosonic systems, has been explored less and predominantly using spin-1/2 Restricted Boltzmann Machines (RBMs) with a one-hot/unary encoding. Here we propose a more direct generalisation of RBMs for spin-1 that retains the key properties of the standard spin-1/2 RBM, specifically trivial product states representations, labelling freedom for the visible variables and gauge equivalence to the tensor network formulation. To test this new approach we present variational Monte Carlo (VMC) calculations for the spin-1 antiferromagnetic Heisenberg (AFH) model and benchmark it against the one-hot/unary encoded RBM demonstrating that it achieves the same accuracy with substantially fewer variational parameters. Further to this we investigate how the hidden unit complexity of NQS depend on the local single-spin basis used. Exploiting the tensor network version of our RBM we construct an analytic NQS representation of the Affleck-Kennedy-Lieb-Tasaki (AKLT) state in the $xyz$ spin-1 basis using only $M = 2N$ hidden units, compared to $M \sim O(N2)$ required in the $Sz$ basis. Additional VMC calculations provide strong evidence that the AKLT state in fact possesses an exact compact NQS representation in the $xyz$ basis with only $M=N$ hidden units. These insights help to further unravel how to most effectively adapt the NQS framework for more complex quantum systems.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.