Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 57 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 453 tok/s Pro
Claude Sonnet 4.5 27 tok/s Pro
2000 character limit reached

Univariate Long-Term Municipal Water Demand Forecasting (2105.08486v1)

Published 18 May 2021 in cs.LG

Abstract: This study describes an investigation into the modelling of citywide water consumption in London, Canada. Multiple modelling techniques were evaluated for the task of univariate time series forecasting with water consumption, including linear regression, Facebook's Prophet method, recurrent neural networks, and convolutional neural networks. Prophet was identified as the model of choice, having achieved a mean absolute percentage error of 2.51%, averaged across a 5-fold cross validation. Prophet was also found to have other advantages deemed valuable to water demand management stakeholders, including inherent interpretability and graceful handling of missing data. The implementation for the methods described in this paper has been open sourced, as they may be adaptable by other municipalities.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.