Papers
Topics
Authors
Recent
Search
2000 character limit reached

Learning-Based Robust Resource allocation for D2D Underlaying Cellular Network

Published 18 May 2021 in cs.IT and math.IT | (2105.08324v1)

Abstract: In this paper, we study the resource allocation in D2D underlaying cellular network with uncertain channel state information (CSI). For satisfying the diversity requirements of different users, i.e. the minimum rate requirement for cellular user and the reliability requirement for D2D user, we attempt to maximize the cellular user's throughput whilst ensuring a chance constraint for D2D user. Then, a robust resource allocation framework is proposed for solving the highly intractable chance constraint about D2D reliability requirement, where the CSI uncertainties are represented as a deterministic set and the reliability requirement is enforced to hold for any uncertain CSI within it. Then, a symmetrical-geometry-based learning approach is developed to model the uncertain CSI into polytope, ellipsoidal and box. After that, we derive the robust counterpart of the chance constraint under these uncertainty sets as the computation convenient convex sets. To overcome the conservatism of the symmetrical-geometry-based uncertainty sets, we develop a support vector clustering (SVC)-based approach to model uncertain CSI as a compact convex uncertainty set. Based on that, the chance constraint of D2D is converted into a linear convex set. Then, we develop a bisection search-based power allocation algorithm for solving the resource allocation in D2D underlaying cellular network with different robust counterparts. Finally, we conduct the simulation to compare the proposed robust optimization approaches with the non-robust one.

Citations (11)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.