Papers
Topics
Authors
Recent
2000 character limit reached

The Hurwitz action in complex reflection groups (2105.08104v1)

Published 17 May 2021 in math.CO and math.GR

Abstract: We enumerate Hurwitz orbits of shortest reflection factorizations of an arbitrary element in the infinite family $G(m, p, n)$ of complex reflection groups. As a consequence, we characterize the elements for which the action is transitive and give a simple criterion to tell when two shortest reflection factorizations belong to the same Hurwitz orbit. We also characterize the quasi-Coxeter elements (those with a shortest reflection factorization that generates the whole group) in $G(m, p, n)$.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.