Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fine-grained Interpretation and Causation Analysis in Deep NLP Models (2105.08039v2)

Published 17 May 2021 in cs.CL

Abstract: This paper is a write-up for the tutorial on "Fine-grained Interpretation and Causation Analysis in Deep NLP Models" that we are presenting at NAACL 2021. We present and discuss the research work on interpreting fine-grained components of a model from two perspectives, i) fine-grained interpretation, ii) causation analysis. The former introduces methods to analyze individual neurons and a group of neurons with respect to a language property or a task. The latter studies the role of neurons and input features in explaining decisions made by the model. We also discuss application of neuron analysis such as network manipulation and domain adaptation. Moreover, we present two toolkits namely NeuroX and Captum, that support functionalities discussed in this tutorial.

Citations (8)

Summary

We haven't generated a summary for this paper yet.