Papers
Topics
Authors
Recent
2000 character limit reached

Entropy Maximization for Partially Observable Markov Decision Processes (2105.07490v1)

Published 16 May 2021 in math.OC

Abstract: We study the problem of synthesizing a controller that maximizes the entropy of a partially observable Markov decision process (POMDP) subject to a constraint on the expected total reward. Such a controller minimizes the predictability of an agent's trajectories to an outside observer while guaranteeing the completion of a task expressed by a reward function. We first prove that an agent with partial observations can achieve an entropy at most as well as an agent with perfect observations. Then, focusing on finite-state controllers (FSCs) with deterministic memory transitions, we show that the maximum entropy of a POMDP is lower bounded by the maximum entropy of the parametric Markov chain (pMC) induced by such FSCs. This relationship allows us to recast the entropy maximization problem as a so-called parameter synthesis problem for the induced pMC. We then present an algorithm to synthesize an FSC that locally maximizes the entropy of a POMDP over FSCs with the same number of memory states. In numerical examples, we illustrate the relationship between the maximum entropy, the number of memory states in the FSC, and the expected reward.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.