Papers
Topics
Authors
Recent
2000 character limit reached

Threshold Martingales and the Evolution of Forecasts (2105.06834v1)

Published 14 May 2021 in cs.LG and stat.ME

Abstract: This paper introduces a martingale that characterizes two properties of evolving forecast distributions. Ideal forecasts of a future event behave as martingales, sequen- tially updating the forecast to leverage the available information as the future event approaches. The threshold martingale introduced here measures the proportion of the forecast distribution lying below a threshold. In addition to being calibrated, a threshold martingale has quadratic variation that accumulates to a total determined by a quantile of the initial forecast distribution. Deviations from calibration or to- tal volatility signal problems in the underlying model. Calibration adjustments are well-known, and we augment these by introducing a martingale filter that improves volatility while guaranteeing smaller mean squared error. Thus, post-processing can rectify problems with calibration and volatility without revisiting the original forecast- ing model. We apply threshold martingales first to forecasts from simulated models and then to models that predict the winner in professional basketball games.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.