A multimode quasi-normal spectrum from a perturbed black hole
Abstract: When two black holes merge, the late stage of gravitational wave emission is a superposition of exponentially damped sinusoids. According to the black hole no-hair theorem, this ringdown spectrum depends only on the mass and angular momentum of the final black hole. An observation of more than one ringdown mode can test this fundamental prediction of general relativity. Here we provide strong observational evidence for a multimode black hole ringdown spectrum using the gravitational wave event GW190521, with a maximum Bayes factor of $56\pm1$ ($1\sigma$ uncertainty) preferring two fundamental modes over one. The dominant mode is the $\ell=m=2$ harmonic, and the sub-dominant mode corresponds to the $\ell=m=3$ harmonic. The amplitude of this mode relative to the dominant harmonic is estimated to be $A_{330}/A_{220} = 0.2{+0.2}_{-0.1}$. We estimate the redshifted mass and dimensionless spin of the final black hole as $330_{-40}{+30}~\mathrm{M}_{\odot}$ and $0.86_{-0.11}{+0.06}$, respectively. We find that the final black hole is consistent with the no hair theorem and constrain the fractional deviation from general relativity of the sub-dominant mode's frequency to be $-0.01{+0.08}_{-0.09}$.
- R. P. Kerr, “Gravitational field of a spinning mass as an example of algebraically special metrics,” Phys. Rev. Lett. 11 (1963), 237-238
- V. Cardoso and P. Pani, “Testing the nature of dark compact objects: a status report,” Living Rev. Rel. 22 (2019) no.1, 4
- E. Berti, A. Sesana, E. Barausse, V. Cardoso and K. Belczynski, “Spectroscopy of Kerr black holes with Earth- and space-based interferometers,” Phys. Rev. Lett. 117 (2016) no.10, 101102
- A. H. Nitz et al, “3-OGC: Catalog of gravitational waves from compact-binary mergers,” [arXiv:2105.09151 [astro-ph.HE]].
- A. H. Nitz and C. D. Capano, “GW190521 may be an intermediate mass ratio inspiral,” Astrophys. J. Lett. 907 (2021) no.1, L9
- E. Berti, V. Cardoso and C. M. Will, “On gravitational-wave spectroscopy of massive black holes with the space interferometer LISA,” Phys. Rev. D, 73 (2006), 064030
- I. Kamaretsos, M. Hannam, S. Husa and B. S. Sathyaprakash, “Black-hole hair loss: learning about binary progenitors from ringdown signals,” Phys. Rev. D 85 (2012), 024018
- S. Borhanian, K. G. Arun, H. P. Pfeiffer and B. S. Sathyaprakash, “Comparison of post-Newtonian mode amplitudes with numerical relativity simulations of binary black holes,” Class. Quant. Grav. 37 (2020) no.6, 065006
- C. D. Capano, J. Abedi, S. Kastha, A. H. Nitz, J. Westerweck, Y. F. Wang, M. Cabero, A. B. Nielsen and B. Krishnan, “Statistical validation of the detection of a sub-dominant quasi-normal mode in GW190521,” [arXiv:2209.00640 [gr-qc]].
- I. M. Romero-Shaw, P. D. Lasky, E. Thrane and J. C. Bustillo, “GW190521: orbital eccentricity and signatures of dynamical formation in a binary black hole merger signal,” Astrophys. J. Lett. 903 (2020) no.1, L5
- J. Calderón-Bustillo, N. Sanchis-Gual, A. Torres-Forné and J. A. Font, “Confusing Head-On Collisions with Precessing Intermediate-Mass Binary Black Hole Mergers,” Phys. Rev. Lett. 126 (2021), 201101
- M. Isi, M. Giesler, W. M. Farr, M. A. Scheel and S. A. Teukolsky, “Testing the no-hair theorem with GW150914,” Phys. Rev. Lett. 123 (2019) no.11, 111102
- M. Isi and W. M. Farr, “Revisiting the ringdown of GW150914,” [arXiv:2202.02941 [gr-qc]].
- R. Cotesta, G. Carullo, E. Berti and V. Cardoso, “Analysis of Ringdown Overtones in GW150914,” Phys. Rev. Lett. 129, no.11, 111102 (2022) doi:10.1103/PhysRevLett.129.111102 [arXiv:2201.00822 [gr-qc]].
- M. Giesler, M. Isi, M. A. Scheel and S. Teukolsky, “Black Hole Ringdown: The Importance of Overtones,” Phys. Rev. X 9, no.4, 041060 (2019)
- S. Gossan, J. Veitch and B. S. Sathyaprakash, “Bayesian model selection for testing the no-hair theorem with black hole ringdowns,” Phys. Rev. D 85 (2012), 124056
- J. Sakstein, D. Croon, S. D. McDermott, M. C. Straight and E. J. Baxter, “Beyond the Standard Model Explanations of GW190521,” Phys. Rev. Lett. 125 (2020) no.26, 261105
- M. Safarzadeh and Z. Haiman, “Formation of GW190521 via gas accretion onto Population III stellar black hole remnants born in high-redshift minihalos,” Astrophys. J. Lett. 903 (2020) no.1, L21
- C. Palenzuela, I. Olabarrieta, L. Lehner and S. L. Liebling, “Head-on collisions of boson stars,” Phys. Rev. D 75 (2007), 064005
- S. A. Teukolsky, “Rotating black holes - separable wave equations for gravitational and electromagnetic perturbations,” Phys. Rev. Lett. 29 (1972), 1114-1118
- E. W. Leaver, “An Analytic representation for the quasi normal modes of Kerr black holes,” Proc. Roy. Soc. Lond. A 402 (1985), 285-298
- R. Kass and A. E. Raftery, “Bayes Factors,” J. Am. Statist. Assoc. 90 (1995) no. 430, 773-795
- R. M. Gray, “Toeplitz and Circulant Matrices: A Review,” Foundations and Trends in Communications and Information Theory 2 (2006) n0. 3, 155-239
- L. S. Finn, “Detection, measurement and gravitational radiation,” Phys. Rev. D 46, 5236-5249 (1992)
- B. Allen, W. G. Anderson, P. R. Brady, D. A. Brown and J. D. E. Creighton, “FINDCHIRP: An Algorithm for detection of gravitational waves from inspiraling compact binaries,” Phys. Rev. D 85, 122006 (2012)
- B. Zackay, T. Venumadhav, J. Roulet, L. Dai and M. Zaldarriaga, “Detecting Gravitational Waves in Data with Non-Gaussian Noise,” [arXiv:1908.05644 [astro-ph.IM]].
- J. S. Speagle, “dynesty: a dynamic nested sampling package for estimating Bayesian posteriors and evidences,” Mon. Not. Roy. Astron. Soc. 493 (2020) no. 3, 3132-3158
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.