Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 28 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Graph-based Neural Architecture Search with Operation Embeddings (2105.04885v2)

Published 11 May 2021 in cs.LG, cs.AI, and cs.CV

Abstract: Neural Architecture Search (NAS) has recently gained increased attention, as a class of approaches that automatically searches in an input space of network architectures. A crucial part of the NAS pipeline is the encoding of the architecture that consists of the applied computational blocks, namely the operations and the links between them. Most of the existing approaches either fail to capture the structural properties of the architectures or use hand-engineered vector to encode the operator information. In this paper, we propose the replacement of fixed operator encoding with learnable representations in the optimization process. This approach, which effectively captures the relations of different operations, leads to smoother and more accurate representations of the architectures and consequently to improved performance of the end task. Our extensive evaluation in ENAS benchmark demonstrates the effectiveness of the proposed operation embeddings to the generation of highly accurate models, achieving state-of-the-art performance. Finally, our method produces top-performing architectures that share similar operation and graph patterns, highlighting a strong correlation between the structural properties of the architecture and its performance.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.