MDA-Net: Multi-Dimensional Attention-Based Neural Network for 3D Image Segmentation (2105.04508v1)
Abstract: Segmenting an entire 3D image often has high computational complexity and requires large memory consumption; by contrast, performing volumetric segmentation in a slice-by-slice manner is efficient but does not fully leverage the 3D data. To address this challenge, we propose a multi-dimensional attention network (MDA-Net) to efficiently integrate slice-wise, spatial, and channel-wise attention into a U-Net based network, which results in high segmentation accuracy with a low computational cost. We evaluate our model on the MICCAI iSeg and IBSR datasets, and the experimental results demonstrate consistent improvements over existing methods.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.