Loop homotopy of $6$-manifolds over $4$-manifolds (2105.03881v2)
Abstract: Let $M$ be the $6$-manifold $M$ as the total space of the sphere bundle of a rank $3$ vector bundle over a simply connected closed $4$-manifold. We show that after looping $M$ is homotopy equivalent to a product of loops on spheres in general. This particularly implies the cohomology rigidity property of $M$ after looping. Furthermore, passing to the rational homotopy, we show that such $M$ is Koszul in the sense of Berglund.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.