A new proof for the existence of rotationally symmetric gradient Ricci solitons (2105.03805v4)
Abstract: We give a new proof for the existence of rotationally symmetric steady and expanding gradient Ricci solitons in dimension $n+1$, $2\le n\le 4$, with metric $g=\frac{da2}{h(a2)}+a2d\,\sigma$ for some function $h$ where $d\sigma$ is the standard metric on the unit sphere $Sn$ in $\mathbb{R}n$. More precisely for any $\lambda\ge 0$, $2\le n\le 4$ and $\mu_1\in\mathbb{R}$, we prove the existence of unique solution $h\in C2((0,\infty))\cap C1([0,\infty))$ for the equation $2r2h(r)h_{rr}(r)=(n-1)h(r)(h(r)-1)+rh_r(r)(rh_r(r)-\lambda r-(n-1))$, $h(r)>0$, in $(0,\infty)$ satisfying $h(0)=1$, $h_r(0)=\mu_1$. We also prove the existence of unique analytic solution of the about equation on $[0,\infty)$ for any $\lambda\ge 0$, $n\ge 2$ and $\mu_1\in\mathbb{R}$. Moreover we will prove the asymptotic behaviour of the solution $h$ for any $n\ge 2$, $\lambda\ge 0$ and $\mu_1\in\mathbb{R}\setminus{0}$.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.