Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Apply Artificial Neural Network to Solving Manpower Scheduling Problem (2105.03541v1)

Published 7 May 2021 in cs.LG

Abstract: The manpower scheduling problem is a kind of critical combinational optimization problem. Researching solutions to scheduling problems can improve the efficiency of companies, hospitals, and other work units. This paper proposes a new model combined with deep learning to solve the multi-shift manpower scheduling problem based on the existing research. This model first solves the objective function's optimized value according to the current constraints to find the plan of employee arrangement initially. It will then use the scheduling table generation algorithm to obtain the scheduling result in a short time. Moreover, the most prominent feature we propose is that we will use the neural network training method based on the time series to solve long-term and long-period scheduling tasks and obtain manpower arrangement. The selection criteria of the neural network and the training process are also described in this paper. We demonstrate that our model can make a precise forecast based on the improvement of neural networks. This paper also discusses the challenges in the neural network training process and obtains enlightening results after getting the arrangement plan. Our research shows that neural networks and deep learning strategies have the potential to solve similar problems effectively.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.