Papers
Topics
Authors
Recent
2000 character limit reached

A Convergent Finite Difference Method for Optimal Transport on the Sphere

Published 7 May 2021 in math.NA and cs.NA | (2105.03500v1)

Abstract: We introduce a convergent finite difference method for solving the optimal transportation problem on the sphere. The method applies to both the traditional squared geodesic cost (arising in mesh generation) and a logarithmic cost (arising in the reflector antenna design problem). At each point on the sphere, we replace the surface PDE with a Generated Jacobian equation posed on the local tangent plane using geodesic normal coordinates. The discretization is inspired by recent monotone methods for the Monge-Amp`ere equation, but requires significant adaptations in order to correctly handle the mix of gradient and Hessian terms appearing inside the nonlinear determinant operator, as well as the singular logarithmic cost function. Numerical results demonstrate the success of this method on a wide range of challenging problems involving both the squared geodesic and the logarithmic cost functions.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.