Papers
Topics
Authors
Recent
2000 character limit reached

The Feshbach-Schur map and perturbation theory (2105.02058v1)

Published 5 May 2021 in math-ph, math.MP, and math.SP

Abstract: This paper deals with perturbation theory for discrete spectra of linear operators. To simplify exposition we consider here self-adjoint operators. This theory is based on the Feshbach-Schur map and it has advantages with respect to the standard perturbation theory in three aspects: (a) it readily produces rigorous estimates on eigenvalues and eigenfunctions with explicit constants; (b) it is compact and elementary (it uses properties of norms and the fundamental theorem of algebra about solutions of polynomial equations); and (c) it is based on a self-contained formulation of a fixed point problem for the eigenvalues and eigenfunctions, allowing for easy iterations. We apply our abstract results to obtain rigorous bounds on the ground states of Helium-type ions.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.