Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Reflection on modern methods: a note on variance estimation when using inverse probability weighting to handle attrition in cohort studies (2105.01330v1)

Published 4 May 2021 in stat.AP

Abstract: The inverse probability weighting (IPW) method is used to handle attrition in association analyses derived from cohort studies. It consists in weighting the respondents at a given follow-up by their inverse probability to participate. Weights are estimated first and then used in a weighted association model. When the IPW method is used, instead of using a so-called na{\"i}ve variance estimator, the literature recommends using a robust variance estimator. However, the latter may overestimate the variance because the weights are considered known rather than estimated. In this note, we develop, by a linearization technique, an estimator accounting for the weight estimation phase and explain how it differs from na{\"i}ve and robust variance estimators. We compare the three variance estimators through simulations under several MAR and MNAR scenarios. We found that both the robust and linearized variance estimators were approximately unbiased, even in MNAR scenarios. The naive variance estimator severely underestimated the variance. We encourage researchers to be careful with variance estimation when using the IPW method, avoiding na{\"i}ve estimator and opting for a robust or linearized estimator. R and SAS codes are provided to implement them in their own studies.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.