Even and odd instanton bundles on Fano threefolds
Abstract: We define non-ordinary instanton bundles on Fano threefolds $X$ extending the notion of (ordinary) instanton bundles. We determine a lower bound for the quantum number of a non-ordinary instanton bundle, i.e. the degree of its second Chern class, showing the existence of such bundles for each admissible value of the quantum number when $i_X\ge 2$ or $i_X=1$, $\mathrm{Pic}(X)$ is cyclic and $X$ is ordinary. In these cases we deal with the component inside the moduli spaces of simple bundles containing the vector bundles we construct and we study their restriction to lines. Finally we give a monadic description of non-ordinary instanton bundles on $\mathbb{P}3$ and the smooth quadric studying their loci of jumping lines, when of the expected codimension.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.