Papers
Topics
Authors
Recent
2000 character limit reached

Memory Reduction using a Ring Abstraction over GPU RDMA for Distributed Quantum Monte Carlo Solver (2105.00027v2)

Published 30 Apr 2021 in cs.DC, cond-mat.mtrl-sci, cond-mat.str-el, and cond-mat.supr-con

Abstract: Scientific applications that run on leadership computing facilities often face the challenge of being unable to fit leading science cases onto accelerator devices due to memory constraints (memory-bound applications). In this work, the authors studied one such US Department of Energy mission-critical condensed matter physics application, Dynamical Cluster Approximation (DCA++), and this paper discusses how device memory-bound challenges were successfully reduced by proposing an effective "all-to-all" communication method -- a ring communication algorithm. This implementation takes advantage of acceleration on GPUs and remote direct memory access (RDMA) for fast data exchange between GPUs. Additionally, the ring algorithm was optimized with sub-ring communicators and multi-threaded support to further reduce communication overhead and expose more concurrency, respectively. The computation and communication were also analyzed by using the Autonomic Performance Environment for Exascale (APEX) profiling tool, and this paper further discusses the performance trade-off for the ring algorithm implementation. The memory analysis on the ring algorithm shows that the allocation size for the authors' most memory-intensive data structure per GPU is now reduced to 1/p of the original size, where p is the number of GPUs in the ring communicator. The communication analysis suggests that the distributed Quantum Monte Carlo execution time grows linearly as sub-ring size increases, and the cost of messages passing through the network interface connector could be a limiting factor.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.