Papers
Topics
Authors
Recent
2000 character limit reached

Dynamics of Open Quantum Systems I, Oscillation and Decay (2105.00015v2)

Published 30 Apr 2021 in quant-ph, math-ph, and math.MP

Abstract: We develop a framework to analyze the dynamics of a finite-dimensional quantum system $\rm S$ in contact with a reservoir $\rm R$. The full, interacting $\rm SR$ dynamics is unitary. The reservoir has a stationary state but otherwise dissipative dynamics. We identify a main part of the full dynamics, which approximates it for small values of the $\rm SR$ coupling constant, uniformly for all times $t\ge 0$. The main part consists of explicit oscillating and decaying parts. We show that the reduced system evolution is Markovian for all times. The technical novelty is a detailed analysis of the link between the dynamics and the spectral properties of the generator of the $\rm SR$ dynamics, based on Mourre theory. We allow for $\rm SR$ interactions with little regularity, meaning that the decay of the reservoir correlation function only needs to be polynomial in time, improving on the previously required exponential decay. In this work we distill the structural and technical ingredients causing the characteristic features of oscillation and decay of the $\rm SR$ dynamics. In the companion paper [27] we apply the formalism to the concrete case of an $N$-level system linearly coupled to a spatially infinitely extended thermal bath of non-interacting Bosons.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.