Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
121 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Paraphrastic Representations at Scale (2104.15114v2)

Published 30 Apr 2021 in cs.CL

Abstract: We present a system that allows users to train their own state-of-the-art paraphrastic sentence representations in a variety of languages. We also release trained models for English, Arabic, German, French, Spanish, Russian, Turkish, and Chinese. We train these models on large amounts of data, achieving significantly improved performance from the original papers proposing the methods on a suite of monolingual semantic similarity, cross-lingual semantic similarity, and bitext mining tasks. Moreover, the resulting models surpass all prior work on unsupervised semantic textual similarity, significantly outperforming even BERT-based models like Sentence-BERT (Reimers and Gurevych, 2019). Additionally, our models are orders of magnitude faster than prior work and can be used on CPU with little difference in inference speed (even improved speed over GPU when using more CPU cores), making these models an attractive choice for users without access to GPUs or for use on embedded devices. Finally, we add significantly increased functionality to the code bases for training paraphrastic sentence models, easing their use for both inference and for training them for any desired language with parallel data. We also include code to automatically download and preprocess training data.

Citations (16)

Summary

We haven't generated a summary for this paper yet.