Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 95 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 95 tok/s Pro
GPT OSS 120B 391 tok/s Pro
Kimi K2 159 tok/s Pro
2000 character limit reached

Emulating complex dynamical simulators with random Fourier features (2104.14987v8)

Published 15 Apr 2021 in stat.ME and stat.AP

Abstract: A Gaussian process (GP)-based methodology is proposed to emulate complex dynamical computer models (or simulators). The method relies on emulating the numerical flow map of the system over an initial (short) time step, where the flow map is a function that describes the evolution of the system from an initial condition to a subsequent value at the next time step. This yields a probabilistic distribution over the entire flow map function, with each draw offering an approximation to the flow map. The model output times series is then predicted (under the Markov assumption) by drawing a sample from the emulated flow map (i.e., its posterior distribution) and using it to iterate from the initial condition ahead in time. Repeating this procedure with multiple such draws creates a distribution over the time series. The mean and variance of this distribution at a specific time point serve as the model output prediction and the associated uncertainty, respectively. However, drawing a GP posterior sample that represents the underlying function across its entire domain is computationally infeasible, given the infinite-dimensional nature of this object. To overcome this limitation, one can generate such a sample in an approximate manner using random Fourier features (RFF). RFF is an efficient technique for approximating the kernel and generating GP samples, offering both computational efficiency and theoretical guarantees. The proposed method is applied to emulate several dynamic nonlinear simulators including the well-known Lorenz and van der Pol models. The results suggest that our approach has a promising predictive performance and the associated uncertainty can capture the dynamics of the system appropriately.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.