Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cross-Modal Music-Video Recommendation: A Study of Design Choices (2104.14799v1)

Published 30 Apr 2021 in cs.MM

Abstract: In this work, we study music/video cross-modal recommendation, i.e. recommending a music track for a video or vice versa. We rely on a self-supervised learning paradigm to learn from a large amount of unlabelled data. We rely on a self-supervised learning paradigm to learn from a large amount of unlabelled data. More precisely, we jointly learn audio and video embeddings by using their co-occurrence in music-video clips. In this work, we build upon a recent video-music retrieval system (the VM-NET), which originally relies on an audio representation obtained by a set of statistics computed over handcrafted features. We demonstrate here that using audio representation learning such as the audio embeddings provided by the pre-trained MuSimNet, OpenL3, MusicCNN or by AudioSet, largely improves recommendations. We also validate the use of the cross-modal triplet loss originally proposed in the VM-NET compared to the binary cross-entropy loss commonly used in self-supervised learning. We perform all our experiments using the Music Video Dataset (MVD).

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Geoffroy Peeters (29 papers)
  2. Laure Pretet (1 paper)
  3. Gael Richard (14 papers)
Citations (19)

Summary

We haven't generated a summary for this paper yet.