Papers
Topics
Authors
Recent
Search
2000 character limit reached

Tableau-based decision procedure for non-Fregean logic of sentential identity

Published 29 Apr 2021 in cs.LO | (2104.14697v1)

Abstract: Sentential Calculus with Identity (SCI) is an extension of classical propositional logic, featuring a new connective of identity between formulas. In SCI two formulas are said to be identical if they share the same denotation. In the semantics of the logic, truth values are distinguished from denotations, hence the identity connective is strictly stronger than classical equivalence. In this paper we present a sound, complete, and terminating algorithm deciding the satisfiability of SCI-formulas, based on labelled tableaux. To the best of our knowledge, it is the first implemented decision procedure for SCI which runs in NP, i.e., is complexity-optimal. The obtained complexity bound is a result of dividing derivation rules in the algorithm into two sets: decomposition and equality rules, whose interplay yields derivation trees with branches of polynomial length with respect to the size of the investigated formula. We describe an implementation of the procedure and compare its performance with implementations of other calculi for SCI (for which, however, the termination results were not established). We show possible refinements of our algorithm and discuss the possibility of extending it to other non-Fregean logics.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.