Papers
Topics
Authors
Recent
2000 character limit reached

Uncertainty-aware deep learning for robot touch: Application to Bayesian tactile servo control (2104.14184v1)

Published 29 Apr 2021 in cs.RO

Abstract: This work investigates uncertainty-aware deep learning (DL) in tactile robotics based on a general framework introduced recently for robot vision. For a test scenario, we consider optical tactile sensing in combination with DL to estimate the edge pose as a feedback signal to servo around various 2D test objects. We demonstrate that uncertainty-aware DL can improve the pose estimation over deterministic DL methods. The system estimates the uncertainty associated with each prediction, which is used along with temporal coherency to improve the predictions via a Kalman filter, and hence improve the tactile servo control. The robot is able to robustly follow all of the presented contour shapes to reduce not only the error by a factor of two but also smooth the trajectory from the undesired noisy behaviour caused by previous deterministic networks. In our view, as the field of tactile robotics matures in its use of DL, the estimation of uncertainty will become a key component in the control of physically interactive tasks in complex environments.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com