Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 58 tok/s Pro
Kimi K2 201 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Measuring dependence between random vectors via optimal transport (2104.14023v2)

Published 28 Apr 2021 in math.ST and stat.TH

Abstract: To quantify the dependence between two random vectors of possibly different dimensions, we propose to rely on the properties of the 2-Wasserstein distance. We first propose two coefficients that are based on the Wasserstein distance between the actual distribution and a reference distribution with independent components. The coefficients are normalized to take values between 0 and 1, where 1 represents the maximal amount of dependence possible given the two multivariate margins. We then make a quasi-Gaussian assumption that yields two additional coefficients rooted in the same ideas as the first two. These different coefficients are more amenable for distributional results and admit attractive formulas in terms of the joint covariance or correlation matrix. Furthermore, maximal dependence is proved to occur at the covariance matrix with minimal von Neumann entropy given the covariance matrices of the two multivariate margins. This result also helps us revisit the RV coefficient by proposing a sharper normalisation. The two coefficients based on the quasi-Gaussian approach can be estimated easily via the empirical covariance matrix. The estimators are asymptotically normal and their asymptotic variances are explicit functions of the covariance matrix, which can thus be estimated consistently too. The results extend to the Gaussian copula case, in which case the estimators are rank-based. The results are illustrated through theoretical examples, Monte Carlo simulations, and a case study involving electroencephalography data.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.