Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 85 tok/s
Gemini 2.5 Pro 55 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 123 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Robust portfolio choice with sticky wages (2104.12010v2)

Published 24 Apr 2021 in math.OC

Abstract: We present a robust version of the life-cycle optimal portfolio choice problem in the presence of labor income, as introduced in Biffis, Gozzi and Prosdocimi ("Optimal portfolio choice with path dependent labor income: the infinite horizon case", SIAM Journal on Control and Optimization, 58(4), 1906-1938.) and Dybvig and Liu ("Lifetime consumption and investment: retirement and constrained borrowing", Journal of Economic Theory, 145, pp. 885-907). In particular, in Biffis, Gozzi and Prosdocimi the influence of past wages on the future ones is modelled linearly in the evolution equation of labor income, through a given weight function. The optimisation relies on the resolution of an infinite dimensional HJB equation. We improve the state of art in three ways. First, we allow the weight to be a Radon measure. This accommodates for more realistic weighting of the sticky wages, like, e.g., on a discrete temporal grid according to some periodic income. Second, there is a general correlation structure between labor income and stocks market. This naturally affects the optimal hedging demand, which may increase or decrease according to the correlation sign. Third, we allow the weight to change with time, possibly lacking perfect identification. The uncertainty is specified by a given set of Radon measures $K$, in which the weight process takes values. This renders the inevitable uncertainty on how the past affects the future, and includes the standard case of error bounds on a specific estimate for the weight. Under uncertainty averse preferences, the decision maker takes a maxmin approach to the problem. Our analysis confirms the intuition: in the infinite dimensional setting, the optimal policy remains the best investment strategy under the worst case weight.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube