Papers
Topics
Authors
Recent
Search
2000 character limit reached

MLDS: A Dataset for Weight-Space Analysis of Neural Networks

Published 21 Apr 2021 in cs.LG and stat.ML | (2104.10555v1)

Abstract: Neural networks are powerful models that solve a variety of complex real-world problems. However, the stochastic nature of training and large number of parameters in a typical neural model makes them difficult to evaluate via inspection. Research shows this opacity can hide latent undesirable behavior, be it from poorly representative training data or via malicious intent to subvert the behavior of the network, and that this behavior is difficult to detect via traditional indirect evaluation criteria such as loss. Therefore, it is time to explore direct ways to evaluate a trained neural model via its structure and weights. In this paper we present MLDS, a new dataset consisting of thousands of trained neural networks with carefully controlled parameters and generated via a global volunteer-based distributed computing platform. This dataset enables new insights into both model-to-model and model-to-training-data relationships. We use this dataset to show clustering of models in weight-space with identical training data and meaningful divergence in weight-space with even a small change to the training data, suggesting that weight-space analysis is a viable and effective alternative to loss for evaluating neural networks.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.