Papers
Topics
Authors
Recent
2000 character limit reached

Self-Supervised WiFi-Based Activity Recognition

Published 19 Apr 2021 in cs.NI and cs.LG | (2104.09072v1)

Abstract: Traditional approaches to activity recognition involve the use of wearable sensors or cameras in order to recognise human activities. In this work, we extract fine-grained physical layer information from WiFi devices for the purpose of passive activity recognition in indoor environments. While such data is ubiquitous, few approaches are designed to utilise large amounts of unlabelled WiFi data. We propose the use of self-supervised contrastive learning to improve activity recognition performance when using multiple views of the transmitted WiFi signal captured by different synchronised receivers. We conduct experiments where the transmitters and receivers are arranged in different physical layouts so as to cover both Line-of-Sight (LoS) and non LoS (NLoS) conditions. We compare the proposed contrastive learning system with non-contrastive systems and observe a 17.7% increase in macro averaged F1 score on the task of WiFi based activity recognition, as well as significant improvements in one- and few-shot learning scenarios.

Citations (11)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.