Papers
Topics
Authors
Recent
Search
2000 character limit reached

Sometimes We Want Translationese

Published 15 Apr 2021 in cs.CL | (2104.07623v1)

Abstract: Rapid progress in Neural Machine Translation (NMT) systems over the last few years has been driven primarily towards improving translation quality, and as a secondary focus, improved robustness to input perturbations (e.g. spelling and grammatical mistakes). While performance and robustness are important objectives, by over-focusing on these, we risk overlooking other important properties. In this paper, we draw attention to the fact that for some applications, faithfulness to the original (input) text is important to preserve, even if it means introducing unusual language patterns in the (output) translation. We propose a simple, novel way to quantify whether an NMT system exhibits robustness and faithfulness, focusing on the case of word-order perturbations. We explore a suite of functions to perturb the word order of source sentences without deleting or injecting tokens, and measure the effects on the target side in terms of both robustness and faithfulness. Across several experimental conditions, we observe a strong tendency towards robustness rather than faithfulness. These results allow us to better understand the trade-off between faithfulness and robustness in NMT, and opens up the possibility of developing systems where users have more autonomy and control in selecting which property is best suited for their use case.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.