Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Hierarchical Learning for Generation with Long Source Sequences (2104.07545v2)

Published 15 Apr 2021 in cs.CL

Abstract: One of the challenges for current sequence to sequence (seq2seq) models is processing long sequences, such as those in summarization and document level machine translation tasks. These tasks require the model to reason at the token level as well as the sentence and paragraph level. We design and study a new Hierarchical Attention Transformer-based architecture (HAT) that outperforms standard Transformers on several sequence to sequence tasks. Furthermore, our model achieves state-of-the-art ROUGE scores on four summarization tasks, including PubMed, arXiv, CNN/DM, SAMSum, and AMI. Our model outperforms document-level machine translation baseline on the WMT20 English to German translation task. We investigate what the hierarchical layers learn by visualizing the hierarchical encoder-decoder attention. Finally, we study hierarchical learning on encoder-only pre-training and analyze its performance on classification tasks.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Tobias Rohde (1 paper)
  2. Xiaoxia Wu (30 papers)
  3. Yinhan Liu (8 papers)
Citations (55)