Papers
Topics
Authors
Recent
Search
2000 character limit reached

The Schrödinger particle on the half-line with an attractive $δ$-interaction: bound states and resonances

Published 14 Apr 2021 in math-ph, math.MP, and quant-ph | (2104.06745v1)

Abstract: In this paper we provide a detailed description of the eigenvalue $ E_{D}(x_0)\leq 0$ (respectively $ E_{N}(x_0)\leq 0$) of the self-adjoint Hamiltonian operator representing the negative Laplacian on the positive half-line with a Dirichlet (resp. Neuman) boundary condition at the origin perturbed by an attractive Dirac distribution $-\lambda \delta(x-x_0)$ for any fixed value of the magnitude of the coupling constant. We also investigate the $\lambda$-dependence of both eigenvalues for any fixed value of $x_0$. Furthermore, we show that both systems exhibit resonances as poles of the analytic continuation of the resolvent. These results will be connected with the study of the ground state energy of two remarkable three-dimensional self-adjoint operators, studied in depth in Albeverio's monograph, perturbed by an attractive $\delta$-distribution supported on the spherical shell of radius $r_0$.

Citations (5)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.