Optimal Rates of Teaching and Learning Under Uncertainty (2104.06565v2)
Abstract: In this paper, we consider a recently-proposed model of teaching and learning under uncertainty, in which a teacher receives independent observations of a single bit corrupted by binary symmetric noise, and sequentially transmits to a student through another binary symmetric channel based on the bits observed so far. After a given number $n$ of transmissions, the student outputs an estimate of the unknown bit, and we are interested in the exponential decay rate of the error probability as $n$ increases. We propose a novel block-structured teaching strategy in which the teacher encodes the number of 1s received in each block, and show that the resulting error exponent is the binary relative entropy $D\big(\frac{1}{2}|\max(p,q)\big)$, where $p$ and $q$ are the noise parameters. This matches a trivial converse result based on the data processing inequality, and settles two conjectures of [Jog and Loh, 2021] and [Huleihel, Polyanskiy, and Shayevitz, 2019]. In addition, we show that the computation time required by the teacher and student is linear in $n$. We also study a more general setting in which the binary symmetric channels are replaced by general binary-input discrete memoryless channels. We provide an achievability bound and a converse bound, and show that the two coincide in certain cases, including (i) when the two channels are identical, and (ii) when the student-teacher channel is a binary symmetric channel. More generally, we give sufficient conditions under which our learning rate is the best possible for block-structured protocols.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.