Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Solving DWF Dirac Equation Using Multi-splitting Preconditioned Conjugate Gradient with Tensor Cores on NVIDIA GPUs (2104.05615v2)

Published 12 Apr 2021 in hep-lat

Abstract: We show that using the multi-splitting algorithm as a preconditioner for the domain wall Dirac linear operator, arising in lattice QCD, effectively reduces the inter-node communication cost, at the expense of performing more on-node floating point and memory operations. Correctly including the boundary \textit{snake} terms, the preconditioner is implemented in the QUDA framework, where it is found that utilizing kernel fusion and the tensor cores on NVIDIA GPUs is necessary to achieve a sufficiently performant preconditioner. A reduced-dimension (reduced-$L_s$) strategy is also proposed and tested for the preconditioner. We find the method achieves lower time to solution than regular CG at high node count despite the additional local computational requirements from the preconditioner. This method could be useful for supercomputers with more on-node flops and memory bandwidth than inter-node communication bandwidth.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.