Papers
Topics
Authors
Recent
Search
2000 character limit reached

Rank-R FNN: A Tensor-Based Learning Model for High-Order Data Classification

Published 11 Apr 2021 in cs.LG, cs.NE, and stat.ML | (2104.05048v1)

Abstract: An increasing number of emerging applications in data science and engineering are based on multidimensional and structurally rich data. The irregularities, however, of high-dimensional data often compromise the effectiveness of standard machine learning algorithms. We hereby propose the Rank-R Feedforward Neural Network (FNN), a tensor-based nonlinear learning model that imposes Canonical/Polyadic decomposition on its parameters, thereby offering two core advantages compared to typical machine learning methods. First, it handles inputs as multilinear arrays, bypassing the need for vectorization, and can thus fully exploit the structural information along every data dimension. Moreover, the number of the model's trainable parameters is substantially reduced, making it very efficient for small sample setting problems. We establish the universal approximation and learnability properties of Rank-R FNN, and we validate its performance on real-world hyperspectral datasets. Experimental evaluations show that Rank-R FNN is a computationally inexpensive alternative of ordinary FNN that achieves state-of-the-art performance on higher-order tensor data.

Citations (20)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.