Papers
Topics
Authors
Recent
2000 character limit reached

TedNet: A Pytorch Toolkit for Tensor Decomposition Networks

Published 11 Apr 2021 in cs.LG and cs.AI | (2104.05018v2)

Abstract: Tensor Decomposition Networks (TDNs) prevail for their inherent compact architectures. To give more researchers a flexible way to exploit TDNs, we present a Pytorch toolkit named TedNet. TedNet implements 5 kinds of tensor decomposition(i.e., CANDECOMP/PARAFAC (CP), Block-Term Tucker (BTT), Tucker-2, Tensor Train (TT) and Tensor Ring (TR) on traditional deep neural layers, the convolutional layer and the fully-connected layer. By utilizing the basic layers, it is simple to construct a variety of TDNs. TedNet is available at https://github.com/tnbar/tednet.

Citations (16)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.