Papers
Topics
Authors
Recent
2000 character limit reached

Generating Multi-type Temporal Sequences to Mitigate Class-imbalanced Problem

Published 7 Apr 2021 in cs.LG | (2104.03428v2)

Abstract: From the ad network standpoint, a user's activity is a multi-type sequence of temporal events consisting of event types and time intervals. Understanding user patterns in ad networks has received increasing attention from the machine learning community. Particularly, the problems of fraud detection, Conversion Rate (CVR), and Click-Through Rate (CTR) prediction are of interest. However, the class imbalance between major and minor classes in these tasks can bias a machine learning model leading to poor performance. This study proposes using two multi-type (continuous and discrete) training approaches for GANs to deal with the limitations of traditional GANs in passing the gradient updates for discrete tokens. First, we used the Reinforcement Learning (RL)-based training approach and then, an approximation of the multinomial distribution parameterized in terms of the softmax function (Gumble-Softmax). Our extensive experiments based on synthetic data have shown the trained generator can generate sequences with desired properties measured by multiple criteria.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.