2000 character limit reached
Hyperspectral and LiDAR data classification based on linear self-attention (2104.02301v1)
Published 6 Apr 2021 in cs.CV and eess.IV
Abstract: An efficient linear self-attention fusion model is proposed in this paper for the task of hyperspectral image (HSI) and LiDAR data joint classification. The proposed method is comprised of a feature extraction module, an attention module, and a fusion module. The attention module is a plug-and-play linear self-attention module that can be extensively used in any model. The proposed model has achieved the overall accuracy of 95.40\% on the Houston dataset. The experimental results demonstrate the superiority of the proposed method over other state-of-the-art models.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.