Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Melnikov method for non-conservative perturbations of the three-body problem (2104.02202v1)

Published 6 Apr 2021 in math.DS

Abstract: We consider the planar circular restricted three-body problem (PCRTBP), as a model for the motion of a spacecraft relative to the Earth-Moon system. We focus on the Lagrange equilibrium points $L_1$ and $L_2$. There are families of Lyapunov periodic orbits around either $L_1$ or $L_2$, forming Lyapunov manifolds. There also exist homoclinic orbits to the Lyapunov manifolds around either $L_1$ or $L_2$, as well as heteroclinic orbits between the Lyapunov manifold around $L_1$ and the one around $L_2$. The motion along the homoclinic/heteroclinic orbits can be described via the scattering map, which gives the future asymptotic of a homoclinic orbit as a function of the past asymptotic. In contrast with the more customary Melnikov theory, we do not need to assume that the asymptotic orbits have a special nature (periodic, quasi-periodic, etc.). We add a non-conservative, time-dependent perturbation, as a model for a thrust applied to the spacecraft for some duration of time, or for some other effect, such as solar radiation pressure. We compute the first order approximation of the perturbed scattering map, in terms of fast convergent integrals of the perturbation along homoclinic/heteroclinic orbits of the unperturbed system. As a possible application, this result can be used to determine the trajectory of the spacecraft upon using the thrust.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.