Papers
Topics
Authors
Recent
Search
2000 character limit reached

Convolutional Neural Opacity Radiance Fields

Published 5 Apr 2021 in cs.CV | (2104.01772v1)

Abstract: Photo-realistic modeling and rendering of fuzzy objects with complex opacity are critical for numerous immersive VR/AR applications, but it suffers from strong view-dependent brightness, color. In this paper, we propose a novel scheme to generate opacity radiance fields with a convolutional neural renderer for fuzzy objects, which is the first to combine both explicit opacity supervision and convolutional mechanism into the neural radiance field framework so as to enable high-quality appearance and global consistent alpha mattes generation in arbitrary novel views. More specifically, we propose an efficient sampling strategy along with both the camera rays and image plane, which enables efficient radiance field sampling and learning in a patch-wise manner, as well as a novel volumetric feature integration scheme that generates per-patch hybrid feature embeddings to reconstruct the view-consistent fine-detailed appearance and opacity output. We further adopt a patch-wise adversarial training scheme to preserve both high-frequency appearance and opacity details in a self-supervised framework. We also introduce an effective multi-view image capture system to capture high-quality color and alpha maps for challenging fuzzy objects. Extensive experiments on existing and our new challenging fuzzy object dataset demonstrate that our method achieves photo-realistic, globally consistent, and fined detailed appearance and opacity free-viewpoint rendering for various fuzzy objects.

Citations (19)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.