Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 189 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Model Assessment for a Generalised Bayesian Structural Equation Model (2104.01603v3)

Published 4 Apr 2021 in stat.ME, math.ST, and stat.TH

Abstract: The paper proposes a novel model assessment paradigm aiming to address shortcoming of posterior predictive $p-$values, which provide the default metric of fit for Bayesian structural equation modelling (BSEM). The model framework of the paper focuses on the approximate zero approach, according to which parameters that would before set to zero (e.g. factor loadings) are now formulated to be approximate zero via informative priors (Muthen and Asparouhov, 2012). The introduced model assessment procedure monitors the out-of-sample predictive performance of the fitted model, and together with a list of guidelines we provide, one can investigate whether the hypothesised model is supported by the data. We incorporate scoring rules and cross-validation to supplement existing model assessment metrics for Bayesian SEM. The proposed tools can be applied to models for both categorical and continuous data. The modelling of categorical and non-normally distributed continuous data is facilitated with the introduction of an item-individual random effect that can also be used for outlier detection. We study the performance of the proposed methodology via simulations. The factor model for continuous and binary data is fitted to data on the `Big-5' personality scale and the Fagerstrom test for nicotine dependence respectively.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.