Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Monte Carlo execution time estimation for Privacy-preserving Distributed Function Evaluation protocols (2104.01281v1)

Published 3 Apr 2021 in cs.CR and cs.PF

Abstract: Recent developments in Machine Learning and Deep Learning depend heavily on cloud computing and specialized hardware, such as GPUs and TPUs. This forces those using those models to trust private data to cloud servers. Such scenario has prompted a large interest on Homomorphic Cryptography and Secure Multi-Party Computation protocols that allow the use of cloud computing power in a privacy-preserving manner. When comparing the efficiency of such protocols, most works in literature resort to complexity analysis that gives asymptotic higher-bounding limits of computational cost when input size tends to infinite. These limits may be very different from the actual cost or execution time, when performing such computations over small, or average-sized datasets. We argue that Monte Carlo methods can render better computational cost and time estimates, fostering better design and implementation decisions for complex systems, such as Privacy-Preserving Machine Learning Frameworks.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.