Papers
Topics
Authors
Recent
Search
2000 character limit reached

Deep Reinforcement Learning for Resource Allocation in Business Processes

Published 29 Mar 2021 in cs.LG and cs.HC | (2104.00541v1)

Abstract: Assigning resources in business processes execution is a repetitive task that can be effectively automated. However, different automation methods may give varying results that may not be optimal. Proper resource allocation is crucial as it may lead to significant cost reductions or increased effectiveness that results in increased revenues. In this work, we first propose a novel representation that allows modeling of a multi-process environment with different process-based rewards. These processes can share resources that differ in their eligibility. Then, we use double deep reinforcement learning to look for optimal resource allocation policy. We compare those results with two popular strategies that are widely used in the industry. Learning optimal policy through reinforcement learning requires frequent interactions with the environment, so we also designed and developed a simulation engine that can mimic real-world processes. The results obtained are promising. Deep reinforcement learning based resource allocation achieved significantly better results compared to two commonly used techniques.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.