Papers
Topics
Authors
Recent
2000 character limit reached

Fitting Elephants

Published 31 Mar 2021 in cs.LG, cs.AI, and q-bio.NC | (2104.00526v1)

Abstract: Textbook wisdom advocates for smooth function fits and implies that interpolation of noisy data should lead to poor generalization. A related heuristic is that fitting parameters should be fewer than measurements (Occam's Razor). Surprisingly, contemporary ML approaches, cf. deep nets (DNNs), generalize well despite interpolating noisy data. This may be understood via Statistically Consistent Interpolation (SCI), i.e. data interpolation techniques that generalize optimally for big data. In this article we elucidate SCI using the weighted interpolating nearest neighbors (wiNN) algorithm, which adds singular weight functions to kNN (k-nearest neighbors). This shows that data interpolation can be a valid ML strategy for big data. SCI clarifies the relation between two ways of modeling natural phenomena: the rationalist approach (strong priors) of theoretical physics with few parameters and the empiricist (weak priors) approach of modern ML with more parameters than data. SCI shows that the purely empirical approach can successfully predict. However data interpolation does not provide theoretical insights, and the training data requirements may be prohibitive. Complex animal brains are between these extremes, with many parameters, but modest training data, and with prior structure encoded in species-specific mesoscale circuitry. Thus, modern ML provides a distinct epistemological approach different both from physical theories and animal brains.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.